skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCord, Sarah E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. The world's rangelands and drylands are undergoing rapid change, and consequently are becoming more difficult to manage. Big data and digital technologies (digital tools) provide land managers with a means to understand and adaptively manage change. An assortment of tools—including standardized field ecosystem monitoring databases; web‐accessible maps of vegetation change, production forecasts, and climate risk; sensor networks and virtual fencing; mobile applications to collect and access a variety of data; and new models, interpretive tools, and tool libraries—together provide unprecedented opportunities to detect and direct rangeland change. Accessibility to and manager trust in and knowledge of these tools, however, have failed to keep pace with technological advances. Collaborative adaptive management that involves multiple stakeholders and scientists who learn from management actions is ideally suited to capitalize on an integrated suite of digital tools. Embedding science professionals and experienced technology users in social networks can enhance peer‐to‐peer learning about digital tools and fulfill their considerable promise. 
    more » « less
  3. Transect-based monitoring has long been a valuable tool in ecosystem monitoring. These transects are often used to measure multiple ecosystem attributes. The line-point intercept (LPI), vegetation height, and canopy gap intercept methods comprise a set of core methods, which provide indicators of ecosystem condition. However, users struggle to design a sampling strategy that optimizes the ability to detect ecological change using transect-based methods. We assessed the sensitivity of these core methods on a one-hectare plot to transect length, number, and sampling interval to determine: 1) minimum sampling required to describe ecosystem characteristics and detect change for each method and 2) optimal transect length and number for all three methods to make recommendations for future analyses and monitoring efforts. We used data from 13 National Wind Erosion Research Network locations spanning the western US, which included 151 measurements over time across five biomes. We found that longer and increased numbers of transects were more important for reducing sampling error than increased sample intensity along transects. For all methods and indicators across plots, three 100-m transects reduced sampling error so that indicator estimates fall within an 95% confidence interval of +/- 5% for canopy gap intercept and LPI-total foliar cover, +/- 5 cm for height and +/- two species for LPI-species counts. For the same criteria at 80% confidence intervals, two 100-m transects are needed. Site-scale inference was strongly affected by sample design, consequently our understanding of ecological dynamics may be influenced by sampling decisions. 
    more » « less
  4. Freckleton, Robert (Ed.)